Chapter 2 Basic Structure: Sets, Functions, Sequences, Sums, and Matrices¶
2.1 Sets & 2.2 Set Operations¶
- Set
- unversal set \(U\)
- empty set \(\emptyset\)
- subset: \(A \subseteq B\)
- equality of sets: \(A = B \leftrightarrow A \subseteq B \land B \subseteq A\)
-
proper subset: \(A \subset B \leftrightarrow A \subseteq B \land A \neq B\)
-
cardinality: \(|S|\)
- Cartesian product: \(A \times B\)
- finite/infinite
power set \(P(S)\)¶
- \(P(S) = \{X | X \subseteq S\}\)
- \(X \in P(S) => X \subseteq S\)
- \(|P(S)| = 2^n\)
set operation¶
- union: \(A \cup B\)
- intersection: \(A \cap B\)
- difference: \(A - B\)
- symmetric difference: \(A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)\)
-
complement: \(\overline{A} = \{x \in U | x \notin A\}\)
-
disjoint: \(A \cap B = \emptyset\)
set identities
the table
Question
\(S = \{\emptyset\}\), and what is \(P(S), P(P(S))\)?
answer
- \(P(S) = \{\emptyset, \{\emptyset\}\}\)
- \(P(P(S)) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\)
- Proving Set Identities
- Subset method
- Membership Tables
- Apply existing identities
2.3 Functions¶
- function
-
domain/codomain/range
-
range \(\subseteq\) codomain
-
image/preimage
-
one-to-one(injective)
- onto(surjective)
-
one-to-one correspondence(bijection): The two sets must have the same cardinality
-
composition: \((f \circ g)(a) = f(g(a))\)
- take effect from right to left \(\leftarrow\)
Important Functions¶
- floor function \(\lfloor x \rfloor\): \(\lfloor x \rfloor = n\) if and only if \(n \le x \lt n + 1\)
- ceiling function \(\lceil x \rceil\): \(\lceil x \rceil = n\) if and only if \(n - 1 \lt x \le n\)
2.5 Cardinality of Sets¶
expansion: cardinality of finite sets -> cardinality of infinite sets
sets have the same cardinality
- countable \(\aleph_0\): a set is either finite or has the same cardinality as the set of positive integers
- uncountable: not countable
- Theorem: If \(A\) and \(B\) are countable sets, then \(A \cup B\) is also countable
- SCHRODER-BERNSTEIN THEOREM: If \(A\) and \(B\) are sets with \(|A| \le |B|\) and \(|B| \le |A|\), then \(|A| = |B|\)
countable sets
for \((x, y) \in N \times N\), let \(f(x, y) = \frac{(x+y)(x+y+1)}{2} + y + 1\)
- \(|Q^+| \le |S|\)
- \(|S| = |N|\)
- \(N \subseteq Q^+ => |N| \le |Q^+|\)
so \(|Q| = |N|\), Q is countable
uncountable sets
=== \(R\)